Reactive oxygen species stimulate central and peripheral sympathetic nervous system activity.
نویسندگان
چکیده
Recent studies have implicated reactive oxygen species (ROS) in the pathogenesis of hypertension and activation of the sympathetic nervous system (SNS). Because nitric oxide (NO) exerts a tonic inhibition of central SNS activity, increased production of ROS could enhance inactivation of NO and result in activation of the SNS. To test the hypothesis that ROS may modulate SNS activity, we infused Tempol (4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl), a superoxide dismutase mimetic, or vehicle either intravenously (250 microg x kg(-1) x min(-1)) or in the lateral ventricle (50 microg x kg body wt(-1) x min(-1)), and we determined the effects on blood pressure (BP), norepinephrine (NE) secretion from the posterior hypothalamus (PH) measured by the microdialysis technique, renal sympathetic nerve activity (RSNA) measured by direct microneurography, the abundance of neuronal NO synthase (nNOS)-mRNA in the PH, paraventricular nuclei (PVN), and locus coeruleus (LC) measured by RT-PCR, and the secretion of nitrate/nitrite (NO(x)) in the dialysate collected from the PH of Sprague-Dawley rats. Tempol reduced BP whether infused intravenously or intracerebroventricularly. Tempol reduced NE secretion from the PH and RSNA when infused intracerebroventricularly but raised NE secretion from the PH and RSNA when infused intravenously. The effects of intravenous Tempol on SNS activity were blunted or abolished by sinoaortic denervation. Tempol increased the abundance of nNOS in the PH, PVN, and LC when infused intracerebroventricularly, but it decreased the abundance of nNOS when infused intravenously. When given intracerebroventricularly, Tempol also reduced the concentration of NO(x) in the dialysate collected from the PH. Pretreatment with N(omega)-nitro-l-arginine methyl ester did not abolish the effects of intracerebral Tempol on BP, heart rate, NE secretion from the PH, and RSNA suggesting that the effects of Tempol on SNS activity may be in part dependent and in part independent of NO. In all, these studies support the notion that ROS may raise BP via activation of the SNS. This activation may be mediated in part by downregulation of nNOS and NO production, in part by mechanisms independent of NO. The discrepancy in results between intracerebroventricular and intravenous infusion of Tempol can be best explained by direct inhibitory actions on SNS activity when given intracerebral. By contrast, Tempol may exert direct vasodilation of the peripheral circulation and reflex activation of the SNS when given intravenously.
منابع مشابه
Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension.
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood pressure regulation via the modulation of the autonomic nervous system, particularly in the central nervous system (CNS). In general, accumulating evidence suggests that NO inhibits, but ROS activates, the sympathetic nervous system. NO and ROS, however, interact with each other. Our consecutive studies and those ...
متن کاملSympathetic regulation of vascular function in health and disease
The sympathetic nervous system (SNS) is known to play a pivotal role in short- and long-term regulation of different functions of the cardiovascular system. In the past decades increasing evidence demonstrated that sympathetic neural control is involved not only in the vasomotor control of small resistance arteries but also in modulation of large artery function. Sympathetic activity and vascul...
متن کاملOxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension.
Renal injury caused by the injection of phenol in the lower pole of one kidney increases blood pressure (BP), norepinephrine secretion from the posterior hypothalamic nuclei (PH), and renal sympathetic nerve activity in the rat. Renal denervation prevents these effects of phenol. We have also demonstrated that noradrenergic traffic in the brain is modulated by NO and interleukin-1beta. In this ...
متن کاملThe dopaminergic system in hypertension.
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin-angiotensin and sympathetic nervous systems. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3) and D(4)) subtypes based on their st...
متن کاملHeart failure, redox alterations, and endothelial dysfunction.
Heart failure is characterized by neurohumoral alterations, such as activation of the sympathetic nervous system, stimulation of the renin-angiotensin system, increased activity of the endothelin system, increased production of norepinephrine, and increased circulating levels of cytokines. Oxidative stress is associated with the formation of reactive oxygen species (ROS). The myocardium has enz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 287 2 شماره
صفحات -
تاریخ انتشار 2004